Package: FiRE 1.0.1
FiRE: Finder of Rare Entities (FiRE)
The algorithm assigns rareness/ outlierness score to every sample in voluminous datasets. The algorithm makes multiple estimations of the proximity between a pair of samples, in low-dimensional spaces. To compute proximity, FiRE uses Sketching, a variant of locality sensitive hashing. For more details: Jindal, A., Gupta, P., Jayadeva and Sengupta, D., 2018. Discovery of rare cells from voluminous single cell expression data. Nature Communications, 9(1), p.4719. <doi:10.1038/s41467-018-07234-6>.
Authors:
FiRE_1.0.1.tar.gz
FiRE_1.0.1.zip(r-4.5)FiRE_1.0.1.zip(r-4.4)FiRE_1.0.1.zip(r-4.3)
FiRE_1.0.1.tgz(r-4.4-x86_64)FiRE_1.0.1.tgz(r-4.4-arm64)FiRE_1.0.1.tgz(r-4.3-x86_64)FiRE_1.0.1.tgz(r-4.3-arm64)
FiRE_1.0.1.tar.gz(r-4.5-noble)FiRE_1.0.1.tar.gz(r-4.4-noble)
FiRE_1.0.1.tgz(r-4.4-emscripten)FiRE_1.0.1.tgz(r-4.3-emscripten)
FiRE.pdf |FiRE.html✨
FiRE/json (API)
# Install 'FiRE' in R: |
install.packages('FiRE', repos = c('https://princethewinner.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/princethewinner/fire/issues
- sample_data - Preprocessed 293T–Jurkat scRNA-seq dataset
- sample_label - Labels of preprocessed 293T–Jurkat scRNA-seq dataset
Last updated 3 years agofrom:56eaca7551. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 06 2024 |
R-4.5-win-x86_64 | OK | Nov 06 2024 |
R-4.5-linux-x86_64 | OK | Nov 06 2024 |
R-4.4-win-x86_64 | OK | Nov 06 2024 |
R-4.4-mac-x86_64 | OK | Nov 06 2024 |
R-4.4-mac-aarch64 | OK | Nov 06 2024 |
R-4.3-win-x86_64 | OK | Nov 06 2024 |
R-4.3-mac-x86_64 | OK | Nov 06 2024 |
R-4.3-mac-aarch64 | OK | Nov 06 2024 |
Exports:FiRE
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Finder of Rare Entities (FiRE) - To assign rareness/ outlierness score to every sample | FiRE Rcpp_FiRE |
Constructor for Class | Rcpp_FiRE-class |
Hash samples in bins | fit |
Preprocessed 293T–Jurkat scRNA-seq dataset | sample_data |
Labels of preprocessed 293T–Jurkat scRNA-seq dataset | sample_label |
Compute score on hashed sample. | score |